Myelin-Associated Glycoprotein Gene and Brain Morphometry in Schizophrenia

نویسندگان

  • Daniel Felsky
  • Aristotle N. Voineskos
  • Jason P. Lerch
  • Arash Nazeri
  • Sajid A. Shaikh
  • Tarek K. Rajji
  • Benoit H. Mulsant
  • James L. Kennedy
چکیده

Myelin and oligodendrocyte disruption may be a core feature of schizophrenia pathophysiology. The purpose of the present study was to localize the effects of previously identified risk variants in the myelin-associated glycoprotein (MAG) gene on brain morphometry in schizophrenia patients and healthy controls. Forty-five schizophrenia patients and 47 matched healthy controls underwent clinical, structural magnetic resonance imaging, and genetics procedures. Gray and white matter cortical lobe volumes along with hippocampal volumes were calculated from T1-weighted MRI scans. Each subject was also genotyped for the two disease-associated MAG single nucleotide polymorphisms (rs720308 and rs720309). Repeated measures general linear model (GLM) analysis found significant region by genotype and region by genotype by diagnosis interactions for the effects of MAG risk variants on lobar gray matter volumes. No significant associations were found with lobar white matter volumes or hippocampal volumes. Follow-up univariate GLMs found the AA genotype of rs720308 predisposed schizophrenia patients to left temporal and parietal gray matter volume deficits. These results suggest that the effects of the MAG gene on cortical gray matter volume in schizophrenia patients can be localized to temporal and parietal cortices. Our results support a role for MAG gene variation in brain morphometry in schizophrenia, align with other lines of evidence implicating MAG in schizophrenia, and provide genetically based insight into the heterogeneity of brain imaging findings in this disorder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O17: Inflammation in Brain and Spinal Cord

our goal in this paper is to describe and compare basic immunopathologic pattern of common demyelinating disorder, that is very important to choose the best treatment. The most common disorders are multiple sclerosis, neuromyelitis optica,Anti MOG associated disease,ADEM and autoimmune encephalitis. ADEM consists of ‘‘sleeves’’ of demyelination centered on small, engorge...

متن کامل

Reduced Myelin Basic Protein and Actin-Related Gene Expression in Visual Cortex in Schizophrenia

Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or c...

متن کامل

Genetic association and brain morphology studies and the chromosome 8p22 pericentriolar material 1 (PCM1) gene in susceptibility to schizophrenia.

CONTEXT There is evidence of linkage to a schizophrenia susceptibility locus on chromosome 8p21-22 found by several family linkage studies. OBJECTIVES To fine map and identify a susceptibility gene for schizophrenia on chromosome 8p22 and to investigate the effect of this genetic susceptibility on an endophenotype of abnormal brain structure using magnetic resonance imaging. DESIGN Fine map...

متن کامل

Introduction to the special section: Myelin and oligodendrocyte abnormalities in schizophrenia.

A central tenet of modern views of the neurobiology of schizophrenia is that the symptoms of schizophrenia arise from a failure of adequate communication between different brain regions and disruption of the circuitry that underlies behaviour and perception. Historically this disconnectivity syndrome has been approached from a neurotransmitter-based perspective. However, efficient communication...

متن کامل

Variations in oligodendrocyte-related gene expression across multiple cortical regions: implications for the pathophysiology of schizophrenia.

The disconnectivity syndrome hypothesis of schizophrenia suggests that communication between multiple brain circuits and regions may be disrupted. Microarray studies analysed gene expression in 15 different brain regions derived from 13 persons with schizophrenia and controls. The superior temporal gyrus, cingulate gyrus and hippocampus evidence the greatest numbers of abnormally expressed gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012